
CoFrame: A System for Training Novice
Cobot Programmers

Andrew Schoen,1 Nathan White,1 Curt Henrichs,1 Amanda Siebert-Evenstone,2 David Shaffer,2 and Bilge Mutlu1
1 Department of Computer Sciences, 2 Department of Educational Psychology

University of Wisconsin–Madison, Madison, Wisconsin, USA
{schoen,cdhenrichs,bilge}@cs.wisc.edu, {ntwhite,alevenstone}@wisc.edu, dws@education.wisc.edu

Abstract—The introduction of collaborative robots (cobots)
into the workplace has presented both opportunities and chal-
lenges for those seeking to utilize their functionality. Prior
research has shown that despite the capabilities afforded by
cobots, there is a disconnect between those capabilities and the
applications that they currently are deployed in, partially due to
a lack of effective cobot-focused instruction in the field. Experts
who work successfully within this collaborative domain could
offer insight into the considerations and process they use to
more effectively capture this cobot capability. Using an analysis
of expert insights in the collaborative interaction design space,
we developed a set of Expert Frames based on these insights
and integrated these Expert Frames into a new training and
programming system that can be used to teach novice operators
to think, program, and troubleshoot in ways that experts do. We
present our system and case studies that demonstrate how Expert
Frames provide novice users with the ability to analyze and learn
from complex cobot application scenarios.

Index Terms—robotics operator training; robot programming
interfaces; collaborative robots; novice users; expert models

I. INTRODUCTION

More than a third of the facilities that use robotic technology
employ collaborative robots (cobots) [1] and cobots deployed
within the manufacturing context are expected to continue
to grow in market share. Industry seeks to mitigate labor
shortages [2] while improving workcell performance and
reducing human worker’s health risks. To this end, a new
generation of manufacturing robots designed to work in a
shared space alongside human operators as collaborators are
replacing conventional caged robots. Work traditionally done
by a human can be parceled into tasks that consider the skill-
sets uniquely brought by humans and cobots [3]. Although
much research and engineering effort has been done to bring
these robots into the workcell, the training-procedures, tools,
and practices to support human operators have lagged behind
[4]. This lag results in a “skills gap” for operators working
alongside cobots without the knowledge and skills to customize
the robot’s behavior to better accomplish the task [5].

Research has identified specific occupations such as craft
work, where the skills gap in utilizing robotic technology
is most pronounced [6], and how individuals differ in their
specific skills and preferences regarding the use of cobots
[7]. Other research has sought to better understand this skills
gap, specifically to address the question, “what do workers

Business
Objectives

Robot
Performance

Program
Quality

Safety
Concerns

Fig. 1. In this paper, we present a new system, called CoFrame, that
integrates a set of Expert Frames in collaborative robotics, focusing on Safety
Concerns, Program Quality, Robot Performance, and Business Objectives, to
train operators in using, programming, and troubleshooting cobot applications.

need to know in order to effectively utilize these systems?”
Siebert-Evenstone et al. [8] interviewed experts in collaborative
robotics—including engineers, implementers, and trainers—
to identify the skills, tools, and perspectives they utilize
in troubleshooting and programming cobots, developing an
“expert model” of collaborative robotics. Such models serve as
opportunities to develop training, programming, and control
interfaces for HRI research. In order to address the skills
gap in collaborative robotics, we developed a digital training
environment called CoFrame that aims to prepare traditional
and non-traditional students as operators of cobots. In this
paper, we present the model of expert skills and knowledge
that serves as the basis of our automated expert feedback system
illustrated through several system capability case studies.

The contributions of our work include:
• An operationalization of the Safety First expert model as

Expert Frames to address the cobot skills gap;
• Design and implementation of a design-learning environ-

ment that incorporates the Expert Frames 1;
• A set of case studies demonstrating system behavior and

how it provides feedback during authoring/learning.

II. RELATED WORK

In this section, we review related work on recent devel-
opments in collaborative robotics, the skills gap that results

1Code available at https://github.com/Wisc-HCI/CoFrame

Session: Robot Learning and Programming  HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

185978-1-6654-0731-1/22/$31.00 ©2022 IEEE  



from the introduction of these technologies into workplaces,
interfaces for cobot authoring and programming, and the state
of the art in cobot training systems.

A. The Emerging Field of Industrial Collaborative Robotics

Since their introduction to the market in late 2000s, cobots
have found widespread adoption across industries, including
manufacturing [9], logistics [10], and medicine [11]. Research
in the last decade has investigated the safety and ergonomics of
the use of cobots [12–14], how work can be structured to enable
humans and robots to work together [3, 15], and how cobots can
be integrated into production lines [16, 17]. Key insights for the
success of cobots from this body of work include the promise
of cobots to improve both the efficiency and ergonomics of
some manual processes [3] (mostly in medium-sized production
volumes [18]); the need for establishing well-defined levels of
collaboration [15, 19] and forms of task interdependence [20];
and the importance of employee-centered factors such as the
fear of job loss and ensuring an appropriate level of trust in the
robot [21]. Overall, this is a rapidly emerging field involving
the development of new technology to enable the integration of
robots into work environments; study their safety, ergonomics,
and effectiveness; and work toward understanding of how they
affect human workers.

B. The Emerging Worker Skills Gap

Cobots offer many benefits across several industries, includ-
ing productivity benefits to organizations and health and safety
benefits to human workers, but the introduction of advanced
technologies, particularly technologies involving automation,
robotics, and advanced interfaces, into workplaces is creating a
“skills gap”—a gap between the skills necessary to utilize these
technologies and the skills of the existing workforce [4, 5, 22].
In the U.S., nearly half of the job openings, totaling 2.2 million
positions, in manufacturing remain open due to a shortage
of workers with the skills necessary to effectively utilize
such technologies [23]. In the context of robotic technologies,
the skills gap exists at all levels, from robot operators to
researchers [24]. Although education and training have been
proposed as the primary means of closing this gap [25], a
recent analysis of existing educational programs found a lack
of emphasis on critical technical and non-technical, or “soft,”
skills in these programs [26]. Despite showing that industry
lacks the appropriate means, including curricula, materials,
and knowledge, to offer such training, this analysis also
highlights the importance of work-based, hands-on training and
apprenticeships. Our work aims to capitalize on this promise
by creating a training system that situates the learning in a
real-world or simulated work environment.

C. Robot Programming Tools and Environments

An area of collaborative robotics where the skills gap
is significant is the programming of cobots for new tasks
[27]. Existing approaches to addressing this gap primarily
involve the development of intuitive and ease-to-use robot

programming that borrow ideas and concepts from end-
user programming, such as the RoboFlow and Code3 visual
programming languages [28, 29], and the application of
these approaches to the programming of industrial robots
[30]. Evaluations of the effectiveness of these approaches
to enable adult novices to program cobot applications show
them to be more effective, usable, learnable, and satisfactory
compared to the existing cobot programming interfaces [31].
Research into end-user programming tools also include highly
advanced robot programming tools that enable semantic skill
demonstrations [32, 33], task allocations to human-robot teams
[34], and AR-based interfaces that leverage workspaces as
augmented programming surfaces [35–38]. However, these
systems target intuitive and rapid programming of robots and
do not address the skills gap by advancing the skills of the
user in programming and troubleshooting cobot applications.

D. Robotics Training Systems and Programs

Prior approaches to addressing the skills gap in robotics
highlighted the unique challenges of working with robotic sys-
tems, including manipulating real-world entities using software
programs and situating these skills into real-world problems.
For example, Dagdilelis et al. [39] developed a program that
integrated visual programming to teach robot programming
concepts to high-school students. Cobot systems have also been
explored as a medium to teach students at the college level
engineering design [40]. To address the challenge of situating
learned skills in real-world problems through hands-on learning,
prior work has proposed the concept of a “Teaching Factory”
that offers a factory-like classroom environment [41, 42]. These
environments offer trainees genuine systems, constraints, and
problems to work on and opportunities to interact with both
instructors and practitioners. Prior research in situating learning
in genuine environments also includes the development of
virtual- and augmented-reality based learning environments
that enable trainees to perform work tasks and processes [43],
although these systems aim to train workers in collaborating
with robots rather than providing the skills necessary to program
and troubleshoot them. Cobot manufacturers provide training
programs targeting specific skills necessary to utilize their
products, e.g., Universal Robots Academy [44]. These programs
are used in vocational training [45], although effectiveness
of these resources to address the skills gap is unknown, and
experiences of early adopters of cobot systems indicate that they
are not sufficient [4]. Some research has explored methods for
translating expert knowledge to robot operators [46], although
these methods have not been applied in training systems.

We previously discussed opportunities and challenges in
collaborative robotics, particularly the need to address the
skills gap that has become a bottleneck in the widespread
adoption and utilization of cobots. Although the growing body
of research in end-user programming tools can make it easier
for workers to use cobots, addressing the skills gap requires
new training programs and technologies that can help workers
obtain expert problem-solving skills and apply them in real-

Session: Robot Learning and Programming  HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

186



world settings. Our training system, CoFrame, aims to address
this need for cobot operators.

III. EXPERT MODEL

A. Collaborative Expert Model

Our implementation of the Expert Model relies on the
findings of an ethnographic study by Siebert-Evenstone et al.
[8] regarding how experts think about cobot application design.
They found that expert thinking falls into a Safety + structure.
Specifically experts keep Safety concerns (collaborative/shared
space collisions, pinch-points, risk-assessment, force sensing,
tool/part manipulation) in mind while considering other aspects
of the program, such as Performance Objectives (cycle-time,
speed, payload), Business Objectives (robot wear-and-tear, cost,
ROI, efficiency), and the Application (problem-solving, flexi-
bility/adaptability, robot reach, human interaction, positioning).

Experts bring a deep systematic understanding to their
application design to balance a variety of critical safety points
with concerns of cost and flexibility, and usability. They
examine the use case to determine if a cobot is preferable
over a traditional robot, which specific robot(s) to deploy, what
sensors and integrations are needed, the process sturcture, and
how that impacts safety. Traditional manufacturing robots are
either physically caged or use sensors to detect entry into an
exclusion zone, but cobots are designed to safely work around
the human operator with appropriate programming, provided
the integrated end-effector tooling and workspace are also safe.

In designing the application, experts weigh the cost of the
engineering challenge for a robot to manufacture the part
versus having a human operator perform the activity. Experts
typically deploy operators in low interaction roles such as
setup, starting robot, inspection, and ending the process; and
emphasize that they should avoid getting in the way of the
robot. Experts consider where the human operator is within the
workspace, their role, and how they are trained to perform it.
They design their applications to make use of external sensors
(vision systems) and tools (conveyors, CNC mills). When an
error occurs they have knowledge of what it means and are
able to reason about appropriate solutions.

To translate the Expert Model developed by Siebert-
Everstone and colleagues [8] into a form compatible with
learning outcomes, we reorganized these concepts into four
Expert Frames: Safety Concerns, Program Quality, Robot
Performance, and Business Objectives. This mapping can be
seen in Figure 2. Each of these frames represent a lens with
which to assess the robot collaboration.

B. Expert Frames

Safety Concerns: This frame is heavily based on the safety
theme from the Expert Model but incorporates aspects of the
operator and trajectory themes. The Expert Model focuses
on safety, going so far as to place it above the others in
terms of importance. One expert indicated that “I could buy
a collaborative robot, but if I’m moving around steak knives,
it’s no longer collaborative, so there’s no point to using a
collaborative robot” [8]. Thus, the collaboration incorporates

Performance
Factors

Safety

Integration

Programming

Application

Trajectory

Business
Objectives

Robot
Performance

Safety
Concerns

Program
Quality

Reliability
Operator

Fig. 2. The mapping of the themes from the Expert Model [8] into each
of the four Expert Frames: Safety Concerns (pink), Program Quality (blue),
Robot Performance (yellow), and Business Objectives (green). Figure adapted
from Siebert-Evenstone et al. [8].

the orientation and safety of the robot’s tool, the safety of the
individual objects that the robot may be carrying, whether the
robot’s trajectories include possible pinch points or collisions,
the robot’s space usage during the program, and how that
interacts with the human’ collaborator’s space. Key to this frame
is providing clear and concrete feedback about the safety of the
resulting program; as individuals with less cobot programming
experience may not design a task to be safe, unaware that they
are violating certain safety heuristics [8].

Program Quality: Several themes from the Expert Model,
including programming, integration, application, and operator
combine to create this crucial and practical feedback frame.
Many other frames depend on proper specification of the
program to provide meaningful feedback. This frame includes
simple program attributes, such as the parameter satisfaction,
and more complex ones, such as how the robot must adapt
to the duration of various machine processes. Specifically, we
evaluate the program based on missing parameters and code
blocks, unused skills and features, empty code blocks, and any
logical issues regarding integration with machines.

Robot Performance: With a focus on robot execution
quality and ability to perform actions, this frame includes
aspects of performance factors, reliability, and trajectory from
the Expert Model. In many cases, these performance metrics
relate to the other frames, especially Safety Concerns and
Business Objectives, and include qualities such as reachability,
the speed of the joints and end-effector tool, payload, and
space use.

Business Objectives: These outcome-oriented feedback
metrics guide the design by enabling operators to consider
how their changes to the program affect the profitability of
the robot, or how wear-and-tear might be impacted. This
frame is informed by the performance factors, application,
and integration themes from the Expert Model, and focuses

Session: Robot Learning and Programming  HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

187



Collisions

Pinch Points

Occupancy

Thing Movement

End Effector Pose

Safety
Concerns

Missing Blocks

Missing Parameters

Machine Logic

Unused Skills

Unused Features

Empty Blocks

Program
Quality

Reachability

Joint Speed

End Effector Speed

Payload

Space Usage

Robot
Performance

Cycle Time

Idle Time

Return on Investment

Business
Objectives

Fig. 3. The four Expert Frames of CoFrame, and the relationships between
them. As operators address concerns in each frame, they unlock other
considerations. For example, only after addressing whether a Location or
Waypoint is reachable (Robot Performance), do they address issues with the
pose of the end effector.

specifically on cycle and idle times of the robot, and the return
on investment.

C. Frame Relationships

In addition to specifying themes commonly discussed by
cobot experts, the Expert Model describes the relationships
among them. As already noted, expertise is usually identified
not so much by the knowledge of isolated facts or heuristics,
rather by a deep and complex understanding of the relationships
between them within a domain [47–49]. We operationalized
these relationships by linking the individual sections for
frames to other sections within or outside the parent frame.
In some cases, these section relationships are practical. For
example, a coherently defined program with regards to machine
logic (Program Quality) enables calculation of total cycle
time (Business Objectives). In other cases, they reflect the
logical sequences of expert concerns. For example, determining
whether a certain robot pose could introduce pinch points
(Safety Concerns) is only relevant after considering whether
the robot can reach the pose (Robot Performance).

In our Expert Frames, we use these dependencies and
relationships to guide the operator to work through the
logical dependencies whilst developing the connections and
associations between them. A full list of dependencies between
the sections of each of the frames can be seen in Figure 3.

IV. SYSTEM DESIGN & IMPLEMENTATION

We developed CoFrame using the React framework that com-
municates with a backend running a PyBullet [50] simulation.
Visualizations are rendered in Three.js. Our system is designed
around four “tiles” as shown in Figure 4: the Program Editor
tile (G), the Simulation tile (B), the Contextual Information
tile (C), and the Expert Frames tile (A).

A. Programs and Program Editor

We implemented a block-based visual programming language
for operators to build their programs, heavily inspired by other
commonly used tools like Blockly [51] and Scratch [52].

1) Code Block Design: We utilized a drag-and-drop mecha-
nism that allows an operator to easily construct viable programs
(Fig. 4 F) and visualize the connections between different
blocks. This is accomplished by dragging blocks from the
block drawer (Fig. 4 D) into the canvas (Fig. 4 E). Each block
type is given a distinct color and icon in order to assist in
this visualization process. As operators build their program,
they can highlight blocks in the program editor to receive
more information in the Contextual Information tile, as well
as visualize the action in the Simulation tile if fully specified.

2) Block Types: There are two main categories of blocks—
item and executable. Item blocks refer to objects in the
workspace (e.g., things, trajectories, machines, locations, and
waypoints). These item blocks are used to parameterize the
executable blocks, such as actions like “Move Gripper” (accepts
the thing being gripped or released by the tool), “Move
Trajectory” (accepts a trajectory item block), or “Machine Start”
(accepts the machine to start). Some actions take additional
numerical or configuration parameters, such as movement speed
or gripper position (e.g., in the “Move Gripper” action).

Machines are item blocks that create and modify things (parts
and materials the robot interacts with) within the program. In
our simulation, these machines are the 3D printer, conveyors,
and the assembly jig. They specify recipes with inputs, outputs,
and processing times. Things are objects that can be produced
as output of machines, consumed as inputs, and moved by the
robot. They also specify various properties, such as weight and
safety (e.g., a blade is unsafe to carry unsheathed).

Locations and waypoints are positions in 3D space that
represent where the user may want the end effector to be, both
in terms of translation and rotation. Locations are presented to
the operator as places where the robot would start and stop its
movements, such as the end of the conveyor machines or the
assembly jig, and are used in trajectories. Waypoints are used
to specify intermediate positions between locations, usually to

D E
F

A

B

GC
Fig. 4. The layout of the CoFrame interface. Operators can use the Program
Editor tile (G) to construct their program, and can visualize the results in
the Simulator tile (B). The Expert Frames tile (A) allows them to swap
between different Expert Frames and view issues in each frame. When not
viewing issues, the Contextual Information tile (C) shows relevant frame-related
information, and when viewing issues also provides detailed information about
the issue and suggestions for changes. Within the Program Editor (G) operators
can drag blocks from the Block Drawer (D) into the Program Canvas (E). The
Program Canvas contains the program (F) along with implemented skills.

Session: Robot Learning and Programming  HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

188



guide the robot to perform more desirable motions. Trajectory
blocks accept parameter item blocks (locations and waypoints).
They represent the motion the robot will execute; beginning
at the start location, navigating through the an ordered list of
waypoints, and stopping at the end location. They are also
parameterized with movement speed and interpolation type
(inverse-kinematic or joint-based).

Executable blocks within CoFrame fall into three categories:
actions, groups, or skills. Actions, the smallest indivisible units
of code, accept various parameters specifying their behavior.
Actions that affect robot state can be simulated when selected
in the program editor and fully parameterized.

The “Delay” action stalls the program for an adjustable
amount of time, allowing the operator to explicitly specify
a time that the robot is inactive, e.g., to allow the human to
perform a task. Similarly, “Breakpoint” actions are a debugging
action that stops the execution of the program at that block.

The “Machine Initialize, -Start, -Stop, and -Wait” actions all
take in a machine parameter. “Machine Initialize” is equivalent
to turning on the machine, and needs to be performed before any
other machine actions. “Machine Start” begins the associated
recipe with any matching things required. “Machine Stop”
indicates that a machine has completed but cannot be executed
until after processing from the paired “Machine Start” ends.
When completed, the output things are available to be interacted
with. “Machine Wait” allows the operator to specify that the
robot waits for whatever time remains on a machine process
and guarantees that the “Machine Stop” does not occur before
the minimum processing time of the machine has completed.

Regarding robot control, operators have access to the “Move
Gripper”, “Move Trajectory”, and “Move Unplanned” actions.
“Move Gripper” allows the user to manipulate the gripper to
either grasp or release a specified target thing. It takes additional
parameters for the desired final distance between the gripper
fingers, and its movement speed. “Move Trajectory” takes in a
trajectory parameter for the robot to execute, and moves the
robot along the specified motion. “Move Unplanned” takes in
a location parameter and is a way for the operator to specify
starting locations or human-driven operation.

“Group” blocks are action blocks that function as a container
for other actions, allowing the operator to group actions into
coherent code blocks. These can be collapsed to reduce visual
clutter and be previewed in the simulator when fully specified.

“Skill” blocks behave similar to functions in other program-
ming languages, defining a set of parameters, a context of
use for them, and action blocks that are executed. “Skill Call”
blocks are generated for each “Skill” block in the operator’s
program. Like other action blocks, these blocks accept item
parameters and pass them along to the paired “Skill” blocks.

B. Simulation

The Simulation tile visualizes the robot; its movements,
actions, the environment; and frame-based or issue-based
feedback. At the onset, the simulation visualizes the robot
going through the execution of the program. The simulation

also connects with the Expert Frame tile to provide any extra
visual information while showing the relevant robot animation.

C. Contextual Information

The Contextual Information tile provides operators with
frame-specific feedback and suggestions about selected blocks
and items. The displayed information changes based on what
they select and interact with in the Simulation, the Program
Editor, and the Expert Frame tile. This includes definitions
for terms and phrases novice operators are exposed to, frame
dependant information, as well as various graphs for selected
issues. Definitions are provided for words that are commonly
used by experts and within robotics programs as well as
explanations for how they relate to other terms.

Based on the selected frame, the Contextual Information
tile provides additional prompts to help the user think about
the concepts within each frame. For example, when adding
waypoints to trajectories with the Safety Concerns frame
selected, it will show, “Pay special attention to placing
waypoints around the occupancy zone of the human, since
this is more likely to result in undesirable conflicts between
the human and the robot.”

D. Expert Frames

Prior work highlighted the need for programming environ-
ments to provide users with a comprehensive list of issues
and to automatically collect and display information about
program execution [53]. The design of the Expert Frame tile
(Fig. 4 A) builds on these guidelines, automatically providing
feedback about the operator’s program through issues. Each
issue represents a unit of feedback regarding an expert concern
for a particular element of the program, and is complimented
with textual or visual data to give information about how the
program was executed. For example, when viewing issues about
pinch points, the corresponding “Move Trajectory” block in
the program editor is highlighted, and the operator is presented
a simulation view of the robot moving through a trajectory
that highlights the pinch points to draw attention to the issue.

Issues are marked as either warnings or errors. When marked
as warnings, they are displayed in the Expert Frames tile with
gray icons. When marked as an error, they are displayed in red.
Warnings and errors also differ functionally, as warnings can
be manually marked as fixed, allowing the operator to address
other issues in the Expert Frames tile, while errors require the
operator to make adjustments to their program.

1) Safety Concerns: End effector pose issues refer to cases
where the gripper moves quickly in the direction of its fingers.
Each trajectory timestep is scored and shown as a graph in
the Contextual Information tile when the issue is selected. The
simulation displays an animation of the robot moving through
the trajectory along a line marking gripper trajectory, which is
colored to visually indicate the ratings of the different portions
of the trajectory. Operators are first required to address any
reachability issues before addressing end effector pose.

Thing movement issues represent cases where the robot
moves potentially unsafe objects through the space. While

Session: Robot Learning and Programming  HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

189



progressing through the program, checks are made for whether
gripping the thing is possible given the orientations of both
the gripper and thing. If in the program the robot executes a
“Move Trajectory” action whilst carrying an unsafe object, it
is flagged with an error and visualized in the 3D scene.

Each valid trajectory is analyzed with PyBullet collision
detection [50] to detect potential pinch points. These are
visualized as moving dynamic spheres placed around the robot
as it moves along the trajectory, such that larger, darker spheres
are higher priority.

Collision issues occur when a trajectory causes the robot to
collide either with itself or the environment. When selected,
the corresponding trajectory is highlighted in the program
editor, a graph depicting the robots proximity to itself and the
closest object in the environment, and the simulation displays
an animation of the robot moving through the trajectory along
with lines marking the path each of the robot’s linkages take.
Darker colors along the lines indicate closer proximity.

Occupancy issues refer to instances where a robot trajectory
overlaps with the human occupancy zone and share the same
visual cues as collisions issues. Occupancy issues have a
dependency on space usage, as the higher space usage correlates
with an increased likelihood of entering the occupancy zones.

2) Program Quality: Missing block issues identify cases
where the operator has failed to supply a necessary block
where needed, such as in a “Move Trajectory” action. Similarly,
missing parameters refers to instances where the code block
does not have all the required parameters.

Machine logic issues identify where the program specifies
invalid interactions with machines, for example when a machine
is stopped before it finishes processing. Before an operator
can address machine logic issues, they must first address any
missing parameters.

Unused features help operators identify cases of unused
item blocks. Similarly, unused skills refer to operator-defined
skills that are not called in the executed program. When these
types of issue are selected, the corresponding unused block is
highlighted in the program editor.

Empty blocks refer to instances where either the program, a
group, or a skill does not contain any actions. Selecting this
type of issue highlights the empty block in the program editor.

3) Robot Performance: Reachability issues refers to in-
stances where the robot is not able to move to a given waypoint
or location because a solution cannot be found, or the position
is out of the robot’s reach. When selected, the corresponding
waypoint or location is highlighted in both the simulation and
program editor, and a window opens allowing the operator to
adjust the waypoint or location’s position in the environment.

Joint speed issues are instances where the robot’s joints
exceeding a threshold value for a trajectory. When selected,
the corresponding trajectory in the program will be highlighted,
a graph of each joint’s speed over time is displayed in the
Contextual Information tile, and an animation of the robot
executing the trajectory with lines for each of the joints colored
by their speed is shown in the simulation. Before operators
are able to address these issues, they are required to first fix

any issues with reachability, as the execution of trajectories
is dependent on reaching the locations and waypoints along
the way. End effector issues function similarly to joint speed,
instead showing the speed of the end effector. When selected,
it shows similar visuals to joint speed issues, with a graph
and animation of the end effector. For similar reasons to joint
speed, operators must first fix any issues with reachability.

Payload issues occur when the robot lifts things that approach
or exceed its carrying capacity. If such a violation occurs in a
”Move Trajectory,” it is highlighted in the program editor and
simulation. Payload issues require operators to first address
issues with thing movement to fix other non-safe manipulations.

Space usage issues refers to the percentage of the robot’s
workspace utilized at any point during a given trajectory.
When selected, the program editor highlights the corresponding
trajectory; the Contextual Information tile displays a graph of
how the utilization changes over the course of the trajectory;
and the simulation shows a convex hull of the trajectory.

4) Business Objectives: Cycle and idle time issues are
always generated and are encoded as persistent warnings. Cycle
time refers to the total time that it takes for the robot to
complete the operator’s program once, while idle time refers to
just the amount of time a robot is spent idling during program
execution. Similarly, return on investment (ROI) issues are
always generated and refer to the ratio of product value to total
cost building the product, including the cost of robot wear-and-
tear - which is based on the robot’s acceleration. When these
issues are selected, the Contextual Information tile displays a
graph showing how the time changes as the operator adjusts
their program. ROI issues require operators to first address
both cycle and idle times issues, as ROI is dependent on them.

V. CASE STUDIES

To demonstrate the behavior of CoFrame as a learning-
programming environment, we developed three case studies
that illustrate how it detects and responds to issues generated
by the operator to support learning. To accomplish this, we
specifically designed a task to prompt certain issues that the
operator will have to address. The task is based on an expert’s
comments [8] and has the robot assembling a knife from a set
of components, namely a blade and two halves of the handle.
The knife itself is unsafe to carry and the system will notify
the operator if attempted. They will instead have to use a
safety transport jig that covers the blade making it safe to
carry. Blades arrive from a conveyor, handles are produced
with a 3D printer, parts are assembled in a jig, and the finished
knife is deposited on another conveyor. Figure 5 depicts each
of the case studies detailed below.

A. Case Study 1: Defining a trajectory

One of the first substantive actions an operator will attempt
is creating a trajectory to move the robot. They would likely
start by considering the 3D scene and inspecting each machine
to observe where the robot needs to move first. They will
see that they need to move to the blade receiver, which
catches the blades as they arrive from the conveyor. Then

Session: Robot Learning and Programming  HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

190



C
as
e
S
tu
dy
1 A B C D

C
as
e
S
tu
dy
2 GFE

I J K L

C
as
e
S
tu
dy
3

Fig. 5. Three case studies showing the process of evaluating feedback from the system and informing adjustments to the operator’s program. The gradient
background of the figure denotes the switching between Expert Frames by the operator, from Safety Concerns (pink), Program Quality (blue), Robot Performance
(orange), and Business Objectives (green). In Case Study 1, the operator begins by addressing a missing trajectory block (A), followed by filling in its
parameters (B). The operator then addresses reachability concerns (C). They finish by addressing issues with robot collision (D). In Case Study 2, the operator
begins by addressing joint speed issues and visualizes the speed (E). They transition to solving pinch point issues (F). They finish by addressing issues with the
robot’s space usage (H). In Case Study 3, the operator begins by solving issues with uninitialized machine logic (I), then addressing problems with thing
movement (J). They return to addressing a machine logic for a non-stopped machine (K). The operator finishes by viewing the robot’s cycle time (L).

they open the program editor’s block drawer and drag a
“Move Trajectory” block into the program. They click on
the “Refresh” button in the Expert Frames tile refreshing the
program, showing a number of errors. They realize the action
requires a “Trajectory” block. They refresh the feedback and
are prompted to parameterize the trajectory with a start and end
location. Unfortunately their end location is unreachable. They
click on the issue to bring up the location for editing and notice
the robot got stuck in a joint state preventing it from reaching
the location. The operator adjusts the location. CoFrame then
displays the new joint state that aligns the gripper with the
location. At this point, the operator refreshes. They see the
trajectory has been fully specified. However, the trajectory

causes collisions with both the environment and itself. They
add a waypoint, guiding the robot above the table and avoid
colliding with itself. After a last refresh, the collision issues
have been downgraded to warnings.

B. Case Study 2: Debugging a movement

After specifying a syntactically valid trajectory, an operator
may want to evaluate its performance. They click the Robot
Performance frame showing active issues on joint and end
effector speeds. Clicking the joint speed issue plots lines for
each joint position through time in the 3D scene. The operator
also clicks the end effector issue and observes the graph in the
information section. The operator tweaks the speed parameter
to resolve the issue. They switch back to the Safety frame to

Session: Robot Learning and Programming  HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

191



address pinch point violations. The operator adds a waypoint
to better coax the robot to a joint state that prevents the issue.
After adding a waypoint, they click the feedback “Refresh”
button to update the trajectory visualization. The operator is
now prompted to address robot space usage for the trajectory.
They notice that the robot extends out into the workspace more
than necessary so they again tweak the waypoints; iterating
over speed, collision, and pinch point concerns.

C. Case Study 3: Working with machines

The operator revisits the scene to consider the machines’
operations. They click on the blade conveyor and see that it
“produces blades,” which they want to move to the assembly
jig. They open the block drawer and place a “Machine Start”
action after their trajectory; parameterizing the action with
the machine’s item block. They then place a “Machine Wait”
action. Refreshing the feedback, they see an error that the
machine needs to be initialized before use. The operator adds
the necessary action block, then adds a “Move Gripper” action
parameterized with the blade, followed by a second “Move
Trajectory” action. They iterate over the new trajectory in a
similar fashion to the first one, though they add and adjust
waypoints before seeking frame feedback.

After refreshing the feedback, they encounter a thing move-
ment issue called “Grasping unsafe object.” Realizing the issue
is with the blade being grasped, the operator focuses on the
simulation to find the blade receiver machine, which converts
a blade and a transport jig into a safe blade with transport jig
thing. They then add a new set of machine actions (initialize,
start, and wait) to the program. Refreshing feedback, they find
an error “Machine never stopped” for both the conveyor and
receiver. They add the necessary actions and inspect program
operation. Curious about the Business Objectives frame, they
toggle the frame and inspect the cycle time. The operator views
the graph in the Contextual Information tile, and decides to
find a more optimal program. They tweak the order of the
blade conveyor “Machine Start” to happen before moving the
robot to the blade receiver, reducing cycle time.

VI. DISCUSSION

Multiple industries currently face a skills gap in effectively
utilizing cobots in the workplace. Designing cobot applications
requires considerable expertise that few workers currently have,
presenting difficulties for companies looking to incorporate
cobots alongside their human workers. Critically, workers
generally lack the expertise to effectively construct, adapt, and
debug cobot programs. However, this situation also presents
opportunities for job creation if effective instruction methods
can be created which narrow this skills gap.

To better understand what content these methods must
communicate and teach, research by Siebert-Evenstone et al.
[8] identified a set of themes that form a Safety First Expert
Model of cobot expertise. We translated this model into a set
of Expert Frames that can be used to instruct novice cobot
programmers in the content and relationships of the Expert
Model. Next, we presented an implementation of a combined

learning-designing environment that provides interactive textual
and visual feedback for operators’ programs in accordance
with the Expert Frames. Finally, we provided a set of case
studies that illustrate the pathways through these Expert Frames
that operators may trace, thereby creating and reinforcing
associations of content within the Expert Model.

The process of performing this translation and development
was informative as well. While the majority of relationships
between the content of each frames is derived from the Expert
Model, a number of others arose naturally from the design
of the system and the requirements of providing feedback.
For example, a number of Program Quality attributes (e.g.
full parameterization) are required as a necessity of deriving
higher-level feedback on things like Machine Logic and Cycle
Time. Furthermore, designing frame-based feedback at multiple
levels of detail and at various levels of program completion
requires clear, concrete, and data-driven outcome measures.

A. Limitations & Future Work

We have not yet conducted a planned empirical evaluation
of CoFrame with experts to assess the translation of the Expert
Model into Expert Frames within CoFrame. Although our case
studies illustrate system behavior and capabilities, future work
will complement this demonstration with an efficacy study with
novices comparing CoFrame to other methods.

Since program traces can be visualized both in isolation
or within the complete program, this presents a challenge in
matching the joint states of consecutive trajectory movements.
A more reliable method that incorporates a better model of all
possible program traces could alleviate any errors that do arise.
The current version of our system does not address issues like
slip and uncertainty related to gripping real-world objects, nor
does it integrate with physical robot systems. Both may be
considered in future work. CoFrame was built around an Expert
Model that drew on level-one (e.g., start-stop shared-space,
time-separated) collaborations commonly found in industry [4].
Future work should consider more dynamic, reactive human
awareness and explicit modeling of human-robot interaction
within the program. CoFrame is not currently designed to be
customized for alternative setups or to handle real-time control,
but integrating these features may allow it to be more general-
purpose and offer unique feedback opportunities. Given the
importance of visual, contextual feedback in the system, we
plan to consider including Mixed Reality.

CoFrame represents a novel translation of expert-derived
knowledge regarding the design of cobot programs, and a
unique opportunity for future research regarding the efficacy
of such tools as methods for narrowing the skills gaps present
across industries.

VII. ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation
under awards IIS-1822872 and IIS-1925043. We would like
to thank ZeDong Zhang and Yiran Zhou for their assistance
during the development process.

Session: Robot Learning and Programming  HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

192



REFERENCES

[1] D. Miller, Robotics Adoption Survey Finds Ups, Downs, and a Few
Surprises, Online; accessed August 30, 2021, Mar. 2021. [Online].
Available: https://www.automationworld.com/factory/robotics/article/
21307161/robotics- adoption- survey- finds- ups- downs- and- a- few-
surprises.

[2] D. Autor, “Good news: There’s a labor shortage,” The New York Times,
2021. [Online]. Available: https: / /www.nytimes.com/2021/09/04/
opinion/labor-shortage-biden-covid.html.

[3] M. Pearce, B. Mutlu, J. Shah, and R. Radwin, “Optimizing makespan
and ergonomics in integrating collaborative robots into manufacturing
processes,” IEEE transactions on automation science and engineering,
vol. 15, no. 4, pp. 1772–1784, 2018.

[4] J. E. Michaelis, A. Siebert-Evenstone, D. W. Shaffer, and B. Mutlu,
“Collaborative or simply uncaged? understanding human-cobot interac-
tions in automation,” in Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, 2020, pp. 1–12.

[5] J. Wingard and C. Farrugia, The Great Skills Gap: Optimizing Talent
for the Future of Work. Stanford University Press, 2021.

[6] J. R. Holm, E. Lorenz, and J. Stamhus, “The impact of robots and
ai/ml on skills and work organisation,” in Globalisation, New and
Emerging Technologies, and Sustainable Development, Routledge, 2021,
pp. 149–168.

[7] G. Giannopoulou, E.-M. Borrelli, and F. McMaster, “” programming-
it’s not for normal people”: A qualitative study on user-empowering
interfaces for programming collaborative robots,” in 2021 30th IEEE In-
ternational Conference on Robot & Human Interactive Communication
(RO-MAN), IEEE, 2021, pp. 37–44.

[8] A. Siebert-Evenstone, J. E. Michaelis, D. W. Shaffer, and B. Mutlu,
“Safety first: Developing a model of expertise in collaborative robotics,”
in International Conference on Quantitative Ethnography, Springer,
2021, pp. 304–318.

[9] A. C. Simões, A. L. Soares, and A. C. Barros, “Factors influencing
the intention of managers to adopt collaborative robots (cobots) in
manufacturing organizations,” Journal of Engineering and Technology
Management, vol. 57, p. 101 574, 2020.

[10] I. Lappalainen, “Logistics robots as an enabler of hospital service
system renewal?” In The 10 years Naples Forum on Service. Service
Dominant Logic, Network and Systems Theory and Service Science:
Integrating three Perspectives for a New Service Agenda. Ischia, Italy,
2019.

[11] J. Ernst and C. Jonasson, “Serving robots?–exploring human and robot
social dynamics in everyday hospital work,” in 36th EGOS Colloquium
2020: Organizing for a Sustainable Future: Responsibility, Renewal &
Resistance, 2020.

[12] B. Matthias, S. Kock, H. Jerregard, M. Kallman, I. Lundberg, and
R. Mellander, “Safety of collaborative industrial robots: Certification
possibilities for a collaborative assembly robot concept,” in 2011 IEEE
International Symposium on Assembly and Manufacturing (ISAM), Ieee,
2011, pp. 1–6.

[13] J. Fryman and B. Matthias, “Safety of industrial robots: From
conventional to collaborative applications,” in ROBOTIK 2012; 7th
German Conference on Robotics, VDE, 2012, pp. 1–5.

[14] L. Gualtieri, E. Rauch, and R. Vidoni, “Emerging research fields in
safety and ergonomics in industrial collaborative robotics: A systematic
literature review,” Robotics and Computer-Integrated Manufacturing,
vol. 67, p. 101 998, 2021.

[15] J. Shi, G. Jimmerson, T. Pearson, and R. Menassa, “Levels of human
and robot collaboration for automotive manufacturing,” in Proceedings
of the Workshop on Performance Metrics for Intelligent Systems, 2012,
pp. 95–100.

[16] M. Wojtynek, J. J. Steil, and S. Wrede, “Plug, plan and produce as
enabler for easy workcell setup and collaborative robot programming in
smart factories,” KI-Künstliche Intelligenz, vol. 33, no. 2, pp. 151–161,
2019.

[17] J. Horst, E. Messina, J. Marvel, et al., “Best practices for the integration
of collaborative robots into workcells within small and medium-
sized manufacturing operations,” National Institute of Standards and
Technology Advanced Manufacturing Series 100-41, 21 pages, 2021.

[18] Å. Fast-Berglund, F. Palmkvist, P. Nyqvist, S. Ekered, and M. Åkerman,
“Evaluating cobots for final assembly,” Procedia CIRP, vol. 44, pp. 175–
180, 2016.

[19] L. G. Christiernin, “How to describe interaction with a collaborative
robot,” in Proceedings of the Companion of the 2017 ACM/IEEE
International Conference on Human-Robot Interaction, 2017, pp. 93–94.

[20] F. Zhao, C. Henrichs, and B. Mutlu, “Task interdependence in human-
robot teaming,” in 2020 29th IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN), IEEE, 2020,
pp. 1143–1149.

[21] T. Kopp, M. Baumgartner, and S. Kinkel, “Success factors for introduc-
ing industrial human-robot interaction in practice: An empirically driven
framework,” The International Journal of Advanced Manufacturing
Technology, vol. 112, no. 3, pp. 685–704, 2021.

[22] E. Ras, F. Wild, C. Stahl, and A. Baudet, “Bridging the skills gap of
workers in industry 4.0 by human performance augmentation tools:
Challenges and roadmap,” in Proceedings of the 10th International Con-
ference on PErvasive Technologies Related to Assistive Environments,
2017, pp. 428–432.

[23] C. Giffi, P. Wellener, B. Dollar, H. A. Manolian, L. Monck, and
C. Moutray, “Deloitte and the manufacturing institute skills gap and
future of work study,” Deloitte Insights, 2018.

[24] N. Shmatko and G. Volkova, “Bridging the skill gap in robotics:
Global and national environment,” SAGE Open, vol. 10, no. 3,
p. 2 158 244 020 958 736, 2020.

[25] D. Chrisinger, “The solution lies in education: Artificial intelligence &
the skills gap,” On the Horizon, 2019.

[26] M. Andrew, T. Marler, J. Lastunen, H. Acheson-Field, and S. W.
Popper, An Analysis of Education and Training Programs in Advanced
Manufacturing Using Robotics. RAND, 2020.

[27] S. El Zaatari, M. Marei, W. Li, and Z. Usman, “Cobot programming for
collaborative industrial tasks: An overview,” Robotics and Autonomous
Systems, vol. 116, pp. 162–180, 2019.

[28] S. Alexandrova, Z. Tatlock, and M. Cakmak, “Roboflow: A flow-based
visual programming language for mobile manipulation tasks,” in 2015
IEEE International Conference on Robotics and Automation (ICRA),
IEEE, 2015, pp. 5537–5544.

[29] J. Huang and M. Cakmak, “Code3: A system for end-to-end program-
ming of mobile manipulator robots for novices and experts,” in 2017
12th ACM/IEEE International Conference on Human-Robot Interaction
(HRI, IEEE, 2017, pp. 453–462.

[30] D. Weintrop, D. C. Shepherd, P. Francis, and D. Franklin, “Blockly
goes to work: Block-based programming for industrial robots,” in 2017
IEEE Blocks and Beyond Workshop (B&B), IEEE, 2017, pp. 29–36.

[31] D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd,
and D. Franklin, “Evaluating coblox: A comparative study of robotics
programming environments for adult novices,” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, 2018,
pp. 1–12.

[32] F. Steinmetz, A. Wollschläger, and R. Weitschat, “Razer—a hri for
visual task-level programming and intuitive skill parameterization,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1362–1369,
2018.

[33] F. Steinmetz, V. Nitsch, and F. Stulp, “Intuitive task-level programming
by demonstration through semantic skill recognition,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3742–3749, 2019.

[34] A. Schoen, C. Henrichs, M. Strohkirch, and B. Mutlu, “Authr: A
task authoring environment for human-robot teams,” in Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and
Technology, 2020, pp. 1194–1208.

[35] A. Perzylo, N. Somani, S. Profanter, I. Kessler, M. Rickert, and A. Knoll,
“Intuitive instruction of industrial robots: Semantic process descriptions
for small lot production,” in 2016 ieee/rsj international conference on
intelligent robots and systems (iros), IEEE, 2016, pp. 2293–2300.

[36] Y. Gao and C.-M. Huang, “Pati: A projection-based augmented table-
top interface for robot programming,” in Proceedings of the 24th
international conference on intelligent user interfaces, 2019, pp. 345–
355.

[37] E. Senft, M. Hagenow, K. Welsh, R. Radwin, M. Zinn, M. Gleicher,
and B. Mutlu, “Task-level authoring for remote robot teleoperation,”
Frontiers in Robotics & AI, 2021.

[38] E. Senft, M. Hagenow, R. Radwin, M. Zinn, M. Gleicher, and B. Mutlu,
“Situated live programming for human-robot collaboration,” in ACM
Symposium on User Interface and Software Technology, 2021.

[39] V. Dagdilelis, M. Sartatzemi, and K. Kagani, “Teaching (with) robots
in secondary schools: Some new and not-so-new pedagogical prob-
lems,” in Fifth IEEE International Conference on Advanced Learning
Technologies (ICALT’05), IEEE, 2005, pp. 757–761.

Session: Robot Learning and Programming  HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

193



[40] S. Ziaeefard, M. H. Miller, M. Rastgaar, and N. Mahmoudian, “Co-
robotics hands-on activities: A gateway to engineering design and stem
learning,” Robotics and Autonomous Systems, vol. 97, pp. 40–50, 2017.

[41] D. Mavrikios, N. Papakostas, D. Mourtzis, and G. Chryssolouris,
“On industrial learning and training for the factories of the future: A
conceptual, cognitive and technology framework,” Journal of Intelligent
Manufacturing, vol. 24, no. 3, pp. 473–485, 2013.

[42] G. Chryssolouris, D. Mavrikios, and L. Rentzos, “The teaching factory:
A manufacturing education paradigm,” Procedia Cirp, vol. 57, pp. 44–
48, 2016.

[43] E. Matsas and G.-C. Vosniakos, “Design of a virtual reality training
system for human–robot collaboration in manufacturing tasks,” Inter-
national Journal on Interactive Design and Manufacturing (IJIDeM),
vol. 11, no. 2, pp. 139–153, 2017.

[44] U. Robots, Universal robots academy, 2021. [Online]. Available: https:
//academy.universal-robots.com.

[45] M. Słowikowski, Z. Pilat, M. Smater, and J. Zieliński, “Collaborative
learning environment in vocational education,” in AIP Conference
Proceedings, AIP Publishing LLC, vol. 2029, 2018, p. 020 070.

[46] P. Fantini, M. Pinzone, F. Sella, and M. Taisch, “Collaborative robots
and new product introduction: Capturing and transferring human expert
knowledge to the operators,” in International Conference on Applied
Human Factors and Ergonomics, Springer, 2017, pp. 259–268.

[47] M. T. Chi, P. J. Feltovich, and R. Glaser, “Categorization and
representation of physics problems by experts and novices,” Cognitive
science, vol. 5, no. 2, pp. 121–152, 1981.

[48] N. R. Council et al., How people learn: Brain, mind, experience, and
school: Expanded edition. National Academies Press, 2000.

[49] A. A. diSessa, “Knowledge in pieces.,” in Constructivism in the
computer age. Ser. The Jean Piaget symposium series. Hillsdale, NJ,
US: Lawrence Erlbaum Associates, Inc, 1988, pp. 49–70, ISBN: 0-8058-
0101-4 (Hardcover).

[50] E. Coumans and Y. Bai, Pybullet, a python module for physics
simulation for games, robotics and machine learning, http://pybullet.org,
2016–2021.

[51] N. Fraser, “Ten things we’ve learned from blockly,” in 2015 IEEE
Blocks and Beyond Workshop (Blocks and Beyond), IEEE, 2015, pp. 49–
50.

[52] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, et al.,
“Scratch: Programming for all,” Communications of the ACM, vol. 52,
no. 11, pp. 60–67, 2009.

[53] A. J. Ko and B. A. Myers, “Human factors affecting dependability
in end-user programming,” in Proceedings of the first workshop on
end-user software engineering, 2005, pp. 1–4.

Session: Robot Learning and Programming  HRI 2022, March 7-10, 2022, Sapporo, Hokkaido, Japan

194




