
User-Guided Offline Synthesis of Robot Arm Motion from 6-DoF Paths

Pragathi Praveena1, Daniel Rakita1, Bilge Mutlu1 and Michael Gleicher1

Abstract— We present an offline method to generate smooth,
feasible motion for robot arms such that end-effector pose
goals of a 6-DoF path are matched within acceptable limits
specified by the user. Our approach aims to accurately match
the position and orientation goals of the given path, and allows
deviation from these goals if there is danger of self-collisions,
joint-space discontinuities or kinematic singularities. Our
method generates multiple candidate trajectories, and selects
the best by incorporating sparse user input that specifies what
kinds of deviations are acceptable. We apply our method
to a range of challenging paths and show that our method
generates solutions that achieve smooth, feasible motions while
closely approximating the given pose goals and adhering to user
specifications.

I. INTRODUCTION

Computing robot joint configurations such that the motions
executed by its end-effector match a given path is useful
in scenarios such as having a robot reproduce a measured
human demonstration [1], [2], transferring a motion from
one robot to another [3], [4], or having a robot follow
a designed path [5]. While accurately matching the robot
end-effector to the 6-degree of freedom (6-DoF) position
and orientation goals along the path is important, it is also
crucial that the resulting robot motion is feasible – that is,
there should be no self-collisions, joint-space discontinuities
or singular configurations. Furthermore, it is possible that
there is no feasible sequence of robot configurations that
result in exactly following the given path. In practice, exact
matches are typically not necessary. There are often many
approximate solutions, with different tradeoffs. Providing for
user control of importance criteria can lead to more effective
selection of acceptable solutions. For instance, if the robot is
carrying a loaded tray, the user may prefer errors in position
to errors that cause the tray to tilt, or specify that positions
during movement are less important to be precise than when
the tray is being placed.

In this paper, we introduce an approach that creates
robot trajectories in configuration space that closely follow
a 6-DoF Cartesian workspace path within user-specified
tolerances while accommodating kinematic constraints. The
novelty of this method rests on two ideas: (1) the capacity to
deviate from the input path to meet feasibility criteria, and
(2) provision of control over this deviation for the user. We
realize our approach using point-to-point methods: applying

1Pragathi Praveena, Daniel Rakita, Bilge Mutlu and Michael
Gleicher are with the Department of Computer Sciences,
University of Wisconsin–Madison, Madison 53706, USA
[pragathi|rakita|bilge|gleicher]@cs.wisc.edu

This research was supported in part by NSF award 1830242 and a
UW2020 award from the University of Wisconsin–Madison Office of the
Vice Chancellor for Research and Graduate Education.

nonlinear optimization at every time step to minimize
Cartesian-space errors while enforcing motion goals like
avoidance of self-collisions and singularities, maintaining
smoothness by regularization with outputs from previous
time steps, and relaxing certain goals in order to meet
other goals deemed more important by the user. To improve
robustness and find more accurate solutions, our approach
tries many alternative starting points to create a sampling
of candidate trajectories. Our methods provide control over
tolerances, critical frames, and the relative importance of
different axes. This allows a user to guide the algorithm to
select trajectories that either meet accuracy requirements or
have the least-problematic errors.

This paper builds on prior work [6] that provides a
real-time point-to-point inverse kinematics solver called
RelaxedIK that allows pose goals to be relaxed in order to
achieve feasibility goals. This paper extends the RelaxedIK
solver to more fully address the offline path following
problem. Our approach uses RelaxedIK to generate multiple
candidate trajectories which are evaluated to select the
best. This provides more precise solutions and improved
robustness (i.e., the method is more likely to find a
solution that meets specified tolerances). Our approach also
provides additional controls that allow a user to specify what
kinds of errors are most acceptable in cases where perfect
solutions are not achieved. We evaluate our approach by
showing results of creating suitable trajectories for two robot
platforms, the Universal Robots UR5 (6-DoF) and Rethink
Robotics Sawyer (7-DoF), for a range of challenging paths.

II. RELATED WORK

Our user-guided method for synthesis of feasible
motion draws from prior work in robotics and animation,
primarily from motion planning, trajectory optimization and
constraint-based motion synthesis methods.

Hauser [7] considers the problem of creating continuous
mappings from workspace paths to robot trajectories. He
notes that many robots do not have global continuity, even
when they have redundancy; meaning that for some desired
paths, there may be no feasible (i.e., continuous) solutions.
This motivates methods, such as this paper, that seek feasible
paths at the expense of exact path following. Whereas Hauser
attempts to find one-to-one mappings from end-effector
space to robot configurations, we instead consider inexact
mappings that necessarily map from goals to regions of
configuration space, and use the flexibility to choose within
these regions to obtain feasible trajectories.

One approach for path following is sampling-based
algorithms (e.g., [8], [9], [10]) that search for a solution

trajectory by selectively sampling and exploring the space
of collision-free and feasible motions. While these methods
are successful in producing feasible solutions, they may
be computationally inefficient [11], [12] or produce jerky
trajectories that need to be post-processed [13]. Other recent
work [14], [15] addresses similar problems with graph search
algorithms that seek to provide optimal solutions, but do not
provide user control over the trajectories generated.

Another approach employed for path following [16], [17]
is to choose sparse sample points (i.e., keyfames) and rely
on configuration space interpolation to create piecewise
continuous trajectories. Such an approach is problematic
because it provides little guarantee on the movements
between the keyframes: the interpolated paths must still be
checked to confirm that they are feasible (e.g., no collisions)
[18], and they may not approximate a desired path closely.

A third approach is to consider the whole trajectory
holistically [19], [20], [21], treating the entire mapping
problem as a single optimization problem over the entire
trajectory. Such an approach is valuable because choices on
any particular frame must be made in a coordinated manner.
A poor choice on an early frame may lead to a motion
that cannot achieve a later goal. Unfortunately, the need
to consider the entire motion as one large problem leads
to scalability concerns. In theory, such global approaches
can provide feasible and accurate solutions when they
exist. In practice, such approaches are often inefficient and
require good starting points. While our approach cannot
provide the guarantees of sophisticated global methods, it can
complement these approaches by providing quick solutions
for common cases, reserving the complex solvers for when
they are needed. It can also provide a set of good starting
points for a more global method to work with.

Luo and Hauser [22] consider a similar problem to
match workspace paths to robot trajectories. Their method
represents trajectories using B-Spline interpolation to insure
smoothness. Their approach performs a single, global
optimization over the entire motion to best configure the
parameters to approximate the input motion. However,
their approach does not consider orientation goals or
self-collisions; these features would be difficult to add to the
large and complex non-linear optimizations. Their method
also does not provide any user control over accuracy.

Many of the methods from animation discussed above
incorporate user-defined constraints in the definition of the
trajectory optimization problem. Some work in robotics (e.g.,
[23], [24], [25]) considers user-guidance in the configuration
space. Our method includes control over the importance of
certain features, and we show the merit of this addition with
examples in Section V.

III. PROBLEM DEFINITION AND APPROACH OVERVIEW

Our problem is to transform an input Cartesian workspace
path sampled as fx1; x2:::xmg, to an output configuration
space trajectory, fq1; q2:::qng. At any given time t; the
path has a position and orientation, xt 2 SE(3). The output

configuration space is a vector of values for each of the P
parameters (e.g., joint angles) of the robot, qt 2 IRP .

We assume the input is a Cartesian workspace path
represented as a sequence of frames with six degrees of
freedom. We assume that the input path is sampled densely
enough (in time) that it well-approximates a smooth path,
i.e., neighboring frames are close together so any simple
interpolation between configurations is sufficient.

In creating the output sequences, there are three goals.
First, at each frame, a designated coordinate frame (e.g., the
end-effector) on the robot should match the corresponding
input frame within tolerances prescribed by the user. Second,
the configuration at each frame should be feasible, i.e., free
of self-collisions and kinematic singularities, and away from
joint limits. Third, the output sequence should be smooth, in
a discrete sense.

We additionally require consecutive configurations to be
close in configuration space, which addresses two concerns.
First, even though two consecutive output configurations
are individually feasible, the interpolation between these
feasible states may pass through problematic ones. Therefore,
we require configurations to be sufficiently far from
problems (e.g., self-collisions and singularities) so that the
interpolation between them will also be feasible. Second,
while it is possible for close end-effector positions to be
achieved with configuration-space distant configurations, it
is unlikely that interpolating these distant states will keep the
end-effector close; even if it does, these large arm motions
are usually undesirable. Therefore, our approach places
bounds on either the configuration-space distance between
consecutive frames, or the magnitude of the finite-difference
approximations to the higher derivatives.

A naı̈ve approach to the mapping problem would apply
an inverse kinematics solver to compute a configuration
that achieves the target position and orientation for each
input frame. Such an approach ignores the need for
feasibility and continuity. A recent approach, RelaxedIK [6],
provides feasible solutions by extending the IK solver to
consider kinematic feasibility and to create smoothness
by regularizing with previous frames. By relaxing the
requirement of exactly matching the end-effector target pose,
the method can select from within a range of solutions that
come close and result in feasible and smooth trajectories.
Applying RelaxedIK successively to each frame provides
an effective solution to the path mapping problem. The
empirical tests in Rakita et al. [6] show the method is
able to create feasible motions (e.g., sufficiently smooth
as well as avoiding singularities and self-collisions) with
better accuracy than other state-of-the-art motion synthesis
approaches. The sequential application of RelaxedIK is
online (it does not use information about the future) and
fast. However, it often fails to provide accurate solutions
in challenging cases because it cannot look ahead or take
time to explore alternatives. Therefore, it creates unnecessary
deviations from path goals in order to preserve feasibility.

In this paper, we provide an application of RelaxedIK
to better address the offline path mapping problem. Our

approach exploits the offline nature to achieve higher
precision and greater robustness. First, we use the ability
to look ahead to future frames to better sample the solution
space. Our approach effectively applies sequential RelaxedIK
in different ways to provide many candidate trajectories in
order to find one that best meets the goals. Second, we
provide for user control over the tradeoffs in the solutions
by specifying what kinds of errors should be avoided. We
first review the RelaxedIK solver in Section IV and detail
our specific adaptations in Section V.

IV. RELAXED IK

The core of our approach is the RelaxedIK solver
of Rakita et al. [6]. It is an optimization-based inverse
kinematics solver that determines robot configurations (joint
angles) given a 6-DoF Cartesian end-effector target pose and
awareness of feasibility constraints.

As formulated in Equation 1, RelaxedIK minimizes a
weighted sum of objectives that encodes various sub-goals
such as end-effector position and orientation matching, and
avoiding discontinuities by minimizing backward differences
up to the third order between consecutive frames. There are
also constraints to maintain distance from self-collision, stay
within the joint limits and avoid singularities.

� = arg min
�

∑
s2S

ws � fs(�;
s)

s.t. ci(�) � 0; ce(�) = 0
lj � �j � uj ;8j

(1)

Here, � is the current robot configuration, fs(�;
s) is an
objective term that encodes a single sub-goal (s) with
s

being the model parameters, and ws is a static weight value
that determines the relative importance of the sub-goal. ci(�)
is a set of inequality constraints, ce(�) is a set of equality
constraints, and lj and uj values define the upper and lower
bounds for the robot’s joints.

V. IMPROVED SOLUTIONS FOR OFFLINE PROBLEMS

In this section, we describe our methods for offline
generation of trajectories from given paths. Our approach
extends the online approach (i.e., sequential application of
RelaxedIK as described above) by improving the choice
of starting points for the iterative optimization, considering
starting frames other than the beginning, and allowing for
control of the error tradeoffs.

A. Starting Configurations

The iterative optimization in RelaxedIK is sensitive to the
starting point, which is a hyper-parameter to the solver and
provided in the form of a starting configuration, qstart.
A different starting configuration may result in a very
different solution trajectory. Therefore for the first frame
of the sequence, our approach tries a collection of starting
configurations and selects the one that achieves the best
solution. A preprocessing step, performed once for any
particular robot, determines a list of configurations that is
used for all subsequent applications of our method. To

generate this list, the preprocessor samples a large number
of random targets within the workspace and creates a list
of solutions (one per target) that have low position and
orientation error (0.01 mm and 0.01�). It reduces this list
to 30 representative configurations by applying a maximal
different subset algorithm [26].

For subsequent frames, our approach uses the solution
for the previous frame as a starting point, and includes
regularization terms to match prior frames in order to create
smooth paths. After finding this initial solution, our method
re-runs the IK solver with the previous solution as a starting
point and smoothness regularization disabled. In practice this
often leads to more accurate solutions that have acceptable
smoothness, see Figure 1 for an example.

Our approach checks each solution to ensure it meets
the continuity criteria of being close enough to the prior
frame. Failure is rare for the regularized solutions, but
happens occasionally for the iterated solutions. If the size
of the discontinuity is small (but above the tolerance), our
approach has an option to insert interpolated goals between
the previous and current time steps. The interpolated goals
are created by linear interpolation of the positions and
spherical linear interpolation [27] of the orientations. An
example is shown in Figure 2. This feature creates timing
differences between the input and output paths, and may be
disabled. If an unregularized solution is too far from the
previous frame, the initial regularized solution is used. If
the initial regularized solution is too far from the previous
frame’s solution, our approach uses the previous frame’s
solution enforcing temporal feasibility at the expense of
matching. This tradeoff will be controlled in later steps.

B. Initial Frame

Our approach treats the first frame of the sequence
specially: using the starting-configuration sampling method
described in Section V-A to find accurate solutions, and
then proceeding from this frame. This approach is greedy:
it provides for high accuracy on the first frame, but the
selection of the first frame may lead to poor performance
later in the sequence. If the greedy process from the
beginning of the motion fails to provide an acceptable
solution, our approach applies two other methods to find
improved solutions: use of different initial frames and the
testing of multiple paths.

While the first frame of the motion (x1) is the most
natural place to start the sequential solution, we can, in fact
choose any frame to start and work sequentially forwards
and backwards from that frame, which we term as the initial
frame. Our approach is to try multiple initial frames in order
to find one that yields an acceptable solution. For candidates,
we select frames that the user designates as requiring high
accuracy (see user control in Section V-C), as well as frames
with large errors in prior solutions (often caused by the re-use
of previous frames to maintain smoothness as described in
Section V-A). We restrict candidate frames to be at least
50 time steps apart. Figure 3 shows an example where

Y
ax

is
po

sit
io

n
(m

)

X axis position (m)
0.3 0.4 0.5 0.6

- 0.1

- 0.3

0.1

0.3

Po
sit

io
n

er
ro

r (
m

m
)

Or
ie

nt
at

io
n

er
ro

r (
de

gr
ee

)

4

0

8

12

0.05

0

0.10

0.15

Single iteration
Multiple iterations

Output frame
0 50 100 150

Output frame
0 50 100 150

Output frame
0 50 100 150

Je
rk

 (r
ad

/s
)

0.001

0

0.002

A. B.1. B.2. C.
0.003

Fig. 1. Rectangle tracing: Comparison between trajectories generated using single (orange) and multiple (green) iterations of the IK solver. A. Top view:
Overall, both solutions follow the path closely. B. Errors: The single iteration strategy yields solutions that have similar errors to prior work [6] (orange).
The multiple iteration strategy by disabling smoothness regularization can reduce errors to less than 0.1 mm and 0.05�, which is less than the repeatability
of the robots (green). C. Motion quality: As expected, multiple iterations result in a higher jerk trajectory, but this is within the defined acceptable limit
of 0.03 rad=s3.

Y
ax

is
po

sit
io

n
(m

)

X axis position (m)
0.44 0.48 0.52 0.56

- 0.05

- 0.15

0.05

0.15

Po
sit

io
n

er
ro

r (
m

m
)

Or
ie

nt
at

io
n

er
ro

r (
de

gr
ee

)

0.025

0

0.050

0.075

0.01

0

0.02

0.03

Output frame
0 20 40 60

Output frame
0 20 40 60

Output frame
0 20 40 60

Je
rk

 (r
ad

/s
)

0.05

0

0.10

A. B.1. B.2. C.
0.15

No smoothing
With smoothing

Fig. 2. Line tracing: Comparison between a trajectory generated that is not smooth (orange) and another that has smoothing by interpolation (green). A.
Top view: Both solutions follow the path closely. B. Errors: Both trajectories have errors less than 0.1 mm and 0.05�, which is less than the repeatability
of the robots. C. Motion quality: Smoothing reduces the overall jerk in the system to the defined acceptable limit of 0.03 rad=s3 (indicated by the dotted
black line). Note that the interpolation for smoothing results in a delayed output motion.

Y
ax

is
po

sit
io

n
(m

)

X axis position (m)
- 0.1 0.1 0.3 0.5

- 0.1

- 0.3

0.1

0.3

Po
sit

io
n

er
ro

r (
m

m
)

Or
ie

nt
at

io
n

er
ro

r (
de

gr
ee

)

3

0

6

9

0.7

0

1.4

2.1

Output frame
0 50 100 150

Output frame
0 50 100 150

Output frame
0 50 100 150

Je
rk

 (r
ad

/s
)

0.01

0

0.02

A. B.1. B.2. C.
0.03

140

Initial frame 0
Initial frame 140

Fig. 3. Spline tracing: Comparison between trajectories generated from frame 0 (orange) vs 140 (green). A. Top view: The trajectory obtained by
sequentially applying the solver from frame 0 yields a solution that follows the path closely until the last few frames (orange). Starting with frame 140
results in a better solution throughout (green). B. Errors: The solution obtained from starting from frame 140 and working backwards and forwards from
that frame yields lower position and orientation error overall. C. Motion quality: Both solutions have jerk below the defined limit.

computing the trajectory from x140 resulted in an acceptable
solution.

For the initial frame, our approach chooses the best
solution (in terms of error) given the set of starting
configurations. However, this greedy choice may be optimal
for the initial frame and not the entire motion. If the resulting
trajectory is not acceptable, our method will try using other
solutions for the initial frame that have higher errors, but
are still within the specified tolerance. To avoid redundant
computation, we cluster the solutions for the initial frame
using DBSCAN resulting in 2-15 options for each initial
configuration.

C. User Guidance

Our approach attempts to find high accuracy solutions.
However, if such solutions cannot be found, we provide for
user control to determine where errors may be tolerable.
Specifically, we allow for users to specify frames where
accuracy is most critical (used as candidate initial frames
above), and to specify the relative importance of different

matching goals.
We allow a user to specify the relative importance of each

axis of position and orientation matching. For example, in
writing, the height of the pen tip and orientation of the
pen must be precise for the path to succeed, while other
position errors result in sloppier writing (see Figure 5).
The specification of importance is restricted to two levels
depending on whether matching the goals along a certain
axis is emphasized or not. To implement these controls, we
adapt RelaxedIK to have separate weights for each axis of
its matching objective. If no acceptable solution is found
for a frame using the default weights (where all axes are
equally important), the solver is re-run with reduced weights
for axes specified as less important, and the threshold for
acceptability is raised for that axis. An example trajectory
computed using dynamic weights is shown in Figure 4.

D. Algorithm Summary

To summarize the methods described in this section: our
approach first applies RelaxedIK sequentially, starting from

