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Figure 1: In robot teleoperation, we propose that a conflict between information from an operator’s proprioceptive and visual
senses (howmuch their handmoves versus howmuch the robotmoves) is an effective cue for communicatingweight of objects
in a remote environment.A.The robotmovement and operator handmovement are approximately the samewhen the object is
light. B. The operator has to move their hand by a greater distance when the object is heavy, resulting in a visuo-proprioceptive
weight cue. C. We demonstrate the feasibility of using such a cue in four tasks to enhance user performance and experience.

ABSTRACT
In this paper, we design and evaluate a novel form of visually-
simulated haptic feedback cue for communicating weight in robot
teleoperation. We propose that a visuo-proprioceptive cue results
from inconsistencies created between the user’s visual and pro-
prioceptive senses when the robot’s movement differs from the
movement of the user’s input. In a user study where participants
teleoperate a six-DoF robot arm, we demonstrate the feasibility of
using such a cue for communicating weight in four telemanipula-
tion tasks to enhance user experience and task performance.

CCS CONCEPTS
• Human-centered computing → Interaction paradigms; •
Computer systems organization → Robotics.

KEYWORDS
Communicative motion; visuo-proprioceptive cues; pseudohaptics

https://doi.org/10.1145/3319502.3374841

ACM Reference Format:
Pragathi Praveena, Daniel Rakita, Bilge Mutlu, and Michael Gleicher. 2020.
Supporting Perception of Weight through Motion-induced Sensory Con-
flicts in Robot Teleoperation. In Proceedings of the 2020 ACM/IEEE Inter-
national Conference on Human-Robot Interaction (HRI ’20), March 23–26,
2020, Cambridge, United Kingdom. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3319502.3374841

1 INTRODUCTION
In telerobotics systems, an operator controls a robot from a distance.
This approach is useful in scenarios where complete automation
is difficult and cognitive decisions made by an operator is ben-
eficial, such as in unknown or unstructured environments [15].
Teleoperation systems provide operators with a range of feedback
to help them experience the environment as if they are encounter-
ing it directly. Scenarios where operators need to be provided with
feedback on manipulations in a remote workspace are particularly
challenging for feedback design. Force feedback is one approach
that is commonly used to give the operator a “sense” of the haptic
properties of objects in the remote environment. These bilateral
control systems have shown great promise in improving user ex-
perience and task performance, but they also pose challenges in
system stability and can restrict the user’s natural range of motion
[15]. An alternative approach, proposed by Lécuyer et al. [10, 12],
is pseudo-force feedback where haptic feedback is simulated using
vision. However, while this approach has shown promise in desk-
top and virtual reality interfaces, it has never been applied to the
teleoperation of a robot.
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Our work explores the use of visually simulated haptic feedback
for robot teleoperation, specifically to communicate the weight of
an object in a remote workspace to the human operator. We propose
a method where we manipulate robot motion during direct control
of the robot and create a conflict between the information from
a user’s proprioceptive and visual senses (how much their hand
moves versus how much the robot moves). We design our cue based
on early experiments in human perception [3, 25, 28] that suggest
that there are salient kinematic cues related to weight perception.
A human user controlling a teleoperated robot develops a mental
model of how the robot moves with respect to their inputs. Our key
idea is that by deliberately manipulating the motion of the robot
with respect to what the human operator would expect, we create a
communication channel to convey information about the weight of
an object, which scaffolds the forming of the user’s mental model
about the robot’s motions and capabilities. Because weight can be
conveyed with motion cues alone, we have a performance baseline
with which to confirm the existence of the visual-proprioceptive
effect. Prior work has shown that visually presented haptic cues can
be effective in systems with low-latency, in virtual environments,
or when controlling objects with fewer degrees of freedom than a
robot [5, 12, 26]. However, based on prior literature, it is unclear if
the same cues would work in a robot teleoperation setting, which
might involve latency, complex movements, and the operator not
sharing the robot’s perspective.

In this paper, we present the application and initial evaluation
of a visuo-proprioceptive cue for communicating weight to a human
user teleoperating a robot arm. We present results from a user study
where participants completed four tasks in a remote workspace
using a six-DoF robot arm. Our results highlight the promise of
simulating weight using visual motion cues to enhance user ex-
perience and task performance in teleoperation. Additionally, we
show that during teleoperation users do not only passively observe
these cues but experience a visuo-proprioceptive sensory conflict.
These results suggest that sensory conflicts discussed in previous
work on optically-simulated haptic feedback can be effective ways
of providing operator feedback in robot teleoperation settings.

The contribution of our work is threefold: (1) the conceptualiza-
tion and application of visuo-proprioceptive cues as a design element
for creating teleoperation feedback; (2) data from an initial eval-
uation of the visual motion cue in an HRI study; and (3) insights
and design guidelines for the future use of and further research into
visuo-proprioceptive cues as communicative signals in HRI.

2 RELATEDWORK
Alternatives to force feedback have been studied in human-machine
interaction, such as tactile [20], visual [2, 17], auditory [8, 9], and
multimodal cues [13, 19]. In addition to providing a better under-
standing of the remote environment, haptic cues and cues designed
using alternate modalities can influence perceptions of the robot.
For example, stiffness of an input method can change perceptions
of robot speed [24]; the robot’s sound can change perceptions of
its competency [30]; and different visual signals from a drone can
change perceptions of the robot as a collaborator [29]. For the de-
sign of our cue, we draw from prior work in human perception of

kinematic cues to estimate object weight, pseudohaptics, and other
optically-simulated haptic feedback.

2.1 Human perception
Work in human perception [3, 25, 28] suggests that people can
estimate the weight of an object lifted by another person when
they visually observe the lifting action. Shim and Carlton [28] and
Hamilton et al. [6] additionally suggest that the most salient cue
that is used by observers to estimate the weight is variations in
velocity when the object is being lifted off the ground. Importantly,
kinematic cues have shown to have a strong predominance over in-
trinsic object properties such as size, material, or fullness for visual
weight estimation [1]. Recent studies [18, 27, 32] show promising
synthesis of kinematic patterns for robots to communicate weight
while lifting objects. Sciutti et al. [27] specifically looked at whether
people process human and humanoid-robot lifting actions in a sim-
ilar manner. The results indicate that robot action reading is likely
to rely on the same processes underpinning human action read-
ing and that observers are able to infer weights of unknown lifted
objects with similar accuracy in both cases. These studies suggest
that humans can interpret robot motion cues to estimate weight.
However, there is additional work that suggests that having sensory
conflicts between the visual and proprioceptive senses can create
stronger cues. We discuss this literature below.

2.2 Pseudohaptics
Lécuyer et al. [12] introduced the idea of using passive input devices
(do not generate energy like active haptic devices), together with
visual feedback to provide an operator with pseudo-force feedback.
For example, when inserting a virtual cube into a narrow duct,
reduction in the cube’s speed as it enters the duct causes the user
to instinctively increase the pressure on the input device which
results in the feeding back of an increased reaction force by the
static device. The simultaneous deceleration of the object on the
screen and the increased reaction force from the device gives the
user the illusion of friction force between the cube and the duct
[12]. In other work, visuo-proprioceptive sensory conflicts have
been shown to create illusory perceptions of haptic properties such
as weight and stiffness [5, 26]. Pusch and Lécuyer [21] describe
optically simulated haptic feedback as visually presented haptic
effects that have to be “understood” by the user in order to relate
their observations to the simulated phenomena. An example is
the manipulation of speed and size of a mouse cursor to simulate
texture sensations of an image displayed on the computer screen
[11]. While these effects may not have strong illusory effects as
pseudo-force feedback does, studies have shown them to be effective
and to increase user efficiency and satisfaction [31].

We expand this concept of using sensory conflict between the vi-
sual and proprioceptive senses to the context of robot teleoperation.
We seek to understand the extent to which visuo-proprioceptive
sensory conflicts might serve as an effective communicative cue
to improve teleoperator performance and experience. Our imple-
mentation builds on recent work [22] that shows how arm scale
teleoperation systems can be created by mapping the movement of
the user’s arm to the robot and that this mimicry interface is easy
for even novices to use.



3 TECHNICAL DETAILS
Our goal is to generate motion cues to communicate object weight
and blend them with the human operator’s motion commands. We
build on two key findings from prior literature [6, 28]:

(1) When lifting an object with the hand, the duration of the
preparation time prior to lifting the object is a salient cue.

(2) In contrast, when observing another person lift an object, the
visual information needed to identify the weight is available
in the lift motion, especially a lower lift velocity.

Our motion cue manipulates the motion of the robot only in the
vertical direction to simulate the effect of gravity. A gain factor, g,
is used to create variations of the motion cue to convey information
about a range of weights. A gain factor of 1.0 results in direct control
of the robot (no cue), and lower gains signal larger weights.

Our input is a Cartesian workspace path that the operator com-
mands the robot to follow, sampled as {x1, x2, ..., xn }. At any given
time t , the path has a position and orientation, xt ∈ SE(3). For a
given gain, g, blending the motion cue into the commanded path
results in new Cartesian goals {e1, e2, ..., en }, where et ∈ SE(3). xtz
and etz are z-coordinates (corresponding to the vertical direction)
of the end-effector pose goals. When the gripper closes around an
object, e1 is set to x1 and the motion cue is applied.

If [etz − e1z ] ≤ 1 cm:
etz =

д

4
∗ [xtz − xt−1z ] + et−1z (1)

If 1 cm < [etz − e1z ] < 10 cm:
etz = д ∗ [xtz − xt−1z ] + et−1z (2)

If [etz − e1z ] ≥ 10 cm:
etz = [xtz − xt−1z ] + et−1z (3)

In our formulation, the lifting and lowering action is made up
of three phases. Phase 1, defined by Equation 1 and inspired from
the first key finding in prior literature, causes the robot to move
a relatively small amount as compared to the input from the user.
For example, if the gain is g = 0.5, for the first centimeter of robot
motion, the end-effector moves 12.5% of the distance moved by
the operator’s hand. This behavior simulates the effect of inertia
when the operator begins to lift the stationary object. In Figure 2,
we see a slight lag in the beginning before the robot follows the
user input. In Phase 2, defined by Equation 2 and drawn from the
second key finding in prior literature, once the object is in motion,
the robot will move a fraction (defined by g) of the user input. For
example, if the gain is g = 0.5, for the next 9 cm of motion, the robot
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Figure 2: Position, velocity, acceleration of the robot (green)
and user hand (blue) at gain = 0.9 (top) and = 0.65 (bottom).

end-effector moves 50% of the distance moved by the operator’s
hand. Similar cues have been implemented in prior literature where
g is called the control-to-display ratio [5, 26]. The motion cue is
switched off at a height of 10 cm, which marks the onset of Phase 3
(defined by Equation 3). Figure 2 shows that as g gets closer to 1.0,
the motion profiles become more similar to user input. A lower g,
such as g = 0.65, results in lower lift velocity.

The parameters for this cue were chosen based on our observa-
tions and participant feedback from a pilot study. There is potential
to improve the design of the cue by tuning its parameters or manip-
ulating other aspects of the motion (such as acceleration). However,
for our initial evaluation, we designed a cue similar to prior work
in pseudohaptics to serve as a baseline for evaluating it in our novel
setting of robot teleoperation.

4 SYSTEM DETAILS
We integrated our cue within an implementation of the mimicry
control teleoperation approach proposed by Rakita et al. [22, 23].
This implementation of teleoperation allows users to intuitively
and safely control the robot using the free movement of their hands.

Input Device —A glove with six motion capture markers attached
as a rigid frame on the back of the hand served as the input into our
system. Eight Optitrack Flex cameras tracked these markers and
provided precise pose information. A Logitech R800 clicker was
used to operate the robot gripper and to serve as a clutch.

Robot — The user controlled a six-DOF Universal Robots UR5
robot arm equipped with a Robotiq 85 gripper. The robot was op-
erated using velocity control via a network connection at 125 Hz.
The Logitech R800 clicker could send open and close commands to
the gripper. The gripper speed and force were set to default values.

System Architecture—A desktop computer running theWindows
OS streamed the input data from the motion capture system. A
second desktop computer running the Linux OS received the input
motion capture data from the first desktop, computed target joint
angle configurations for the robot, and sent them to the controller.

5 USER STUDY
To obtain preliminary evidence for the effectiveness of our visually
presented haptic cue in providing operators with real-time feedback
on object weights, we conducted a human-subjects study in which
participants performed several telemanipulation tasks with a robot.

5.1 Hypotheses
Our study aimed to test three hypotheses that we have developed
based on findings in prior literature:

H1: If two objects are lifted by the participant, one object
using direct control and the other with a blended visuo-
proprioceptive cue, participants will report a difference
between the objects and the perception of weight without
being explicitly asked about it.

Prior literature [12, 26] has suggested that participants report “feel-
ing” friction, gravity, or weight due to pseudo-force feedback with-
out explicitly being asked about it.

H2: During teleoperation, participants do not only pas-
sively observe the visual motion cue, but experience a



stronger visuo-proprioceptive cue that leads to better task
performance as compared to visual cues alone.

Previous work [18, 27, 32] has shown that people can interpret mo-
tion cues from autonomous robots. In teleoperation, however, the
motion cue must be blended with the operator’s motion commands.
Although operators may generate different movements while per-
forming the same task, we expect them to be able to interpret the
visuo-proprioceptive cue consistently.

H3: The motion cue will improve user experience and task
performance compared to receiving no cue because the
user has a better understanding of physical properties of
the workspace objects through feedback.

If the task requires decision-making based on weight of an object
in the remote robot workspace, we expect communicating weight
to help the user make better decisions and to reduce workload.

5.2 Experimental Design, Tasks, & Procedure
We designed a within-subjects experiment where each participant
completed four tasks. The procedure was administered under a
protocol reviewed and approved by the Institutional Review Board
(IRB) of University of Wisconsin–Madison. Following informed
consent, participants were provided with an explanation of the
objectives of each task prior to starting it and were asked to fill a
set of questionnaires following the task. At the end of the study,
participants gave responses to a semi-structured interview about
their overall experience. These responses were recorded using a
digital voice recorder and transcribed by an experimenter. Two
Logitech C930e cameras were used to record the participant and
the robot motion. Additionally, a Sony HD camcorder was used to
take videos of robot motion for Task 2 where other participants
were asked to observe this motion on recorded video. The camera
was placed on a tripod close to the participant, and care was taken
to ensure that the viewpoint of the remote workspace for the video
was similar to the participant’s viewpoint. In Task 2, the videos
were presented to the participants on a 42-inch video monitor.

Task 1 (Figure 3) — To test H1, we designed Task 1 such that
participants were not explicitly asked about object weight. After
each trial of the task, participants freely described their experience,

Figure 3: In task 1, participants telemanipulated two bean
bags, one associated with a motion cue, and described the
differences in their experiences between A and B.

Figure 4: In task 2, participants lifted two cans and made
a decision as to which can was heavier under two condi-
tions: Controller where the participant teleoperated the ro-
bot and Observer where the participant watched a video of
robot from the previous participant’s Controller trial.

and we recorded their responses. In Task 1, participants were asked
to lift and place down two bean bags with identical weights and
material but of different colors (red and blue) placed at locations A
and B. The values of g associated with the two bags were g = 0.35
and g = 1.0 such that one bag was associated with a motion cue
while the other was not. Across participants, we counterbalanced
the assignment of the motion cue and color of the bags at A and B.

Task 1 also served as a training task for subsequent tasks in this
study. Before picking up any object, participants were asked to
start with their hand in a waist-high position that was consistent
each time to ensure that the starting position did not affect weight
perception. Participants lifted the bean bag at A until they heard a
beep and then placed the bag back down. The beep was sounded
when the object was 10 cm from the starting position. The beep
coincided with the motion cue switching off, of which participants
were not made aware. Then the participants repeated the process
with the bean bag at B. They performed three trails of this task.
After the first trial, participants were asked to describe their ex-
perience. After the second and the third trials, participants were
asked to describe any differences when picking up the two objects
or between the objects themselves.

Task 2 (Figure 4) — To test H2, we designed a 2 × 1 within-
participants, two-alternate forced choice task. The two conditions
that the participants completed were the Controller condition where
the participant teleoperated the robot and the Observer condition
where the participant watched a video of robot movement from
the previous participant’s Controller trial (the first participant used
the results of the last pilot participant). The order of the conditions
was counterbalanced across participants.

In this task, participants were presented with two cans on the
table that were visually similar and had the same weight. Partic-
ipants were explicitly told that the cans weighed differently and
asked to determine the heavier can. We assigned a motion cue cor-
responding to one of five levels of gain—0.25, 0.35, 0.45, 0.65, and
0.9—that resulted in 15 comparisons, which participants completed
in a randomized order. Of the 15 comparisons, 10 were between
cans cued with different levels of gains and 5 were between cans
cued with the same gain. Participants were asked to perform the



same lifting action as in Task 1, which involved picking the object
at A until a beep was heard, placing it back down and repeating
this action with the object at B. Participants wrote their response as
to which can was heavier and rated their level of confidence with
this decision. While the participant completed their responses, the
experimenter reset the cans into starting positions before the next
trial. After each condition, participants filled out the NASA Task
Load Index (TLX) [7] questionnaire.

We chose to use the previous participant’s video of this task for
the Observer condition instead of one or a small set of standard
videos. Our rationale was that the utility of our cue depends on the
subject’s interpretation of the robot motion. By having a constant
stimulus across subjects, the results could be greatly skewed by
the properties of that specific choice of stimulus. For example, data
from a less fluent user is likely to be noisy and harder to interpret
than data from a user with prior robot experience. While different
stimuli may potentially introduce noise into the results, we believe
that our approach improves the external validity of the experiment.

Task 3 (Figure 5) — To test H3, we designed a 3 × 1 within-
participants categorization task. The order of the conditions was
randomized across participants. All the cans used in this task were
visually similar and weighed the same. Participants were asked to
categorize 15 cans (5 cans per condition) into bins labeled “Recycle"
or “Stock” based on whether the can was perceived to be light or
heavy. In each condition, the first can to be picked by the participant
was provided for reference as a can meant for recycling. On average,
this task required participants to perform relatively complex robot
control to lift and place the cans upright in the bin.

In one condition, participants received our motion cue. The
gains associated with the cans were 1.0, 1.0, 0.45, and 0.65. The
order of application was randomized across participants. In another
condition, participants received a number cue, such that when a can
was lifted, a number in the range of 1 to 6 would be revealed behind
the can that was proportional to the intended weight of the object.
The numbers associated with the cans were 1, 3, 5, and 6. The order
of application was randomized across participants. Participants
were told that the recycle can was associated with the number 1.
In the last condition, participants received no cue regarding the
weight of the object. After each condition, participants filled out
the NASA TLX questionnaire.

Figure 5: In task 3, participants were asked to categorize five
cans into bins labeled “Recycle” (for light cans) or “Stock”
(for heavy cans) based on the perceived weight.

Figure 6: In task 4, participants were asked to lift four cans
(A, B, C, D) and order them based on the perceived weight.

Task 4 (Figure 6) — To test H3, we designed a 3 × 1 within-
participants rank-ordering task. The order of the conditions was
randomized across participants. The participants were asked to
lift four cans (A, B, C, D) and order them based on the perceived
weight. Participants were not asked to rearrange the cans but to
write down their rank-order in the questionnaire. They were asked
to keep the number of lifts to a minimum and to write down an
answer as soon as they were confident. No limit was imposed on
the number of lifts because an upper limit was not known a priori.
Participants were allowed to take notes in between trials, so that
they did not have to memorize the order.

In one condition, participants received our motion cue with gains
0.25, 0.35, 0.45, and 0.65. The order of application was randomized
across participants. In another condition, participants received no
cue regarding the weight of the object. All cans used across the
Motion cue and No cue conditions were visually similar and weighed
the same. In the last condition, whichwe callHaptic cue, participants
were asked to perform the ordering task with their hand with
four cans that were visually similar and filled with bags of rice
weighing 50 g, 100 g, 150 g, and 200 g. The order of application was
randomized across participants. After each condition, participants
filled out the NASA TLX questionnaire.

Tasks 3 and 4 were designed to test H3 from different perspec-
tives; Task 3 required complex robot movements, while Task 4
challenged participant sensitivity to small differences in perceived
weight. The Number cue and Haptic cue conditions served as two
different gold standards for the tasks by answering the question,
what is the task performance with maximum information?

Missing data — One participant did not fill out the NASA TLX
questionnaire for Task 2, which resulted in 10% of measures for
workload missing for Task 2. One participant did not complete
Tasks 3 and 4, resulting in 10% of the data from these tasks missing.
Their data for Tasks 1 and 2 have been included in our analysis.

5.3 Measures & Analyses
The measures used in the tasks are described here, along with the
task numbers that are relevant to each measure.

Accuracy (T2, T3) —We compared subject responses to virtual
weight that was introduced due to the motion cue. Participant
responses were converted to a binary scale, 1 corresponding to a
right answer and 0 corresponding to a wrong answer. A response



was considered correct when a can associated with a lower gain
(larger virtual weight) is chosen as the heavier object (T2) or the
object to be stocked (T3). In the No cue condition in Task 3, the
cans were assigned a gain, but no cue was applied, and subject
answers were compared to this assignment. The intention was to
establish a baseline condition close to chance to which the Motion
cue condition could be compared.

Rank-ordering score (T4) — Spearman’s rank correlation [14] was
used to assign a score to the participant’s rank-ordering. A score
of 1 was assigned if the rank-order is correct and a score of -1 is
assigned if the rank-order is reversed. Other scores fall within the
range of (-1, 1). Similar to the Accuracy measure, subject responses
were compared to virtual weight that was introduced based on the
value of the gain associated with the motion cue. To ensure that all
scores were positive, we added 1 to the Spearman’s rank correlation
measure, which resulted in a numeric score between 0 and 2 that
can be analyzed using parametric tests.

Number of lifts (T4) — The number of lifts for each condition was
counted from the video that was recorded from each participant.

Perceived confidence (T2, T3, T4) — Participants answered a single
question measured on a seven-point rating scale with two opposing
anchors (1 = strongly disagree; 7 = strongly agree) and levels of
numbers in between. Although controversial, Carifio and Perla [4]
and Norman [16] support the use of parametric tests for such scales.

Workload (T2, T3, T4) — We used the NASA Task Load Index
(TLX) [7] to assess user’s perceived workload. The total workload is
divided into six subscales—mental demand, physical demand, tem-
poral demand, performance, effort, and frustration—that are each
measured on a 100-point rating scale, where higher ratings indicate
more workload. The scores were averaged with equal weighting to
calculate the TLX (shown in Figure 9).

For Task 2, we analyzed data from accuracy of participant re-
sponses and perceived confidence using repeated-measures chi-
squared test, including the condition, Controller or Observer, as a
within-participant variable. For other measures, we analyzed data
using one-way repeated measures analyses of variance (ANOVA),
including the type of cue, No cue, Motion cue or Number cue/Haptic
cue, as a within-participants variable. If the ANOVA test showed sig-
nificant differences, we used Tukey’s HSD test to determine where
the differences lied while accounting for multiple comparisons.

5.4 Participants
We recruited 10 participants (5 male, 5 female) from the University
of Wisconsin–Madison campus between the ages of 18 and 49
(M = 24.8, SD = 9.58). Participants reported low familiarity with
robots (M = 2.9, SD = 1.79, measured on a seven-point scale).
Two participants were left-handed. Three participants reported an
interaction with a robot in prior robotics research studies. The study
took 90 minutes, and all participants received $ 15 as compensation.

6 RESULTS
In this section, we present the qualitative and quantitative results
from the four tasks in our user study.

Task 1 — At the end of three trials of teleoperating a robot to lift
one cued and another non-cued bag, two out of ten participants

reported a perception of weight for the object with the motion cue.
They mentioned that (participant number in boldface),

P4: “B [cued bag] is much heavier.”
P5: “feel like it’s a lot lighter... the blue bag [non-cued bag].
Because it [robot] would bring it up a lot faster.”
After the first trial, only three out of ten participants reported

any difference between their experiences lifting the two bean bags.
However, their observations were not related to the motion cue,
but rather the difficulty of movement due to lack of practice or bad
positioning. For example,

P8: “I like that the joint there goes with my own arm. I
thought that was very intuitive. And I got it easier with the
second bean bag for some reason in this practice.”
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Figure 8: Bar charts with standard errors for performance
measures for (A.) Task 3 (binning) and (B.) Task 4 (sorting).
Horizontal lines indicate significant TukeyHSD test results.
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Figure 9: Results from the NASA TLX questionnaire are shown as bar charts with standard errors for (A.) Task 2 (2-alternative
forced choice), (B.) Task 3 (binning) and (C.) Task 4 (sorting). Horizontal lines indicate significant Tukey HSD test results.

After the second and third trial, eight out of ten participants
reported the effects of our visuo-proprioceptive cue. For example,

P1: “The robot arm was a bit slow to go up compared to
my hand, it was responding very slowly for the red bag
[cued bag], but otherwise the rest of the movements were, I
think, smoother than before.”
P2: “I feel that I need to make more effort to grab B [cued
bag], because of this movement that it does.”
P3: “With A [cued bag] it felt like slower or something. It
felt like my arm was a lot higher than the robot’s arm was”
Only two participants (P4 and P5 quoted earlier) attributed this

difference in robot movement to difference in object weights.
Task 2 — In Figure 7, our results show that between the two con-

ditions, Controller and Observer, there exist significant differences
in accuracy but not in the perceived confidence. The Response heat
maps reveal that choosing the heavier object is harder when the two
objects are cued using gains that are closer together, as illustrated
by the lighter colors nearer to the diagonal running from the bottom
left corner to the top right corner. This effect is particularly visible
in the Observer condition. For comparisons between cans that are
cued with the same gain value, the can at B is considered heavier

and as the correct answer. We see on the diagonal of the heatmaps
that the accuracy is close to chance, which also verifies that the po-
sition of the can on the table does not influence weight perception.
With regard to significant differences in user experience between
the two conditions, as seen in Figure 9-A, participants report a
higher physical demand in perceived workload in the Controller
condition.

Task 3 — In Figure 8-A, we see that there is a significant differ-
ence in accuracy of response and perceived confidence between the
conditions where participants received a cue (either the Number or
Motion cue) and no cue. Since we expected perfect accuracy in the
Number cue condition, the three out of nine participants (P1, P2,
P7) who made errors were probed about their performance. The
participants reported that the number cue was inconsistent with
how heavy the can “felt.” Additionally, in theNo cue condition, three
out of nine participants (P2, P5, P7) deviated from the instructions
that required them to restrict their movement to lifting the can
and placing it in the appropriate bin. In the absence of any cue,
they swayed the can back and forth mid-air to discern the weight
of the object. In Figure 9-B, we see no significant differences in
perceived workload between the Motion cue and No cue conditions.



Presence of the Number cue leads to lower perceived mental work-
load as compared to providing the Motion cue and better perceived
performance as compared to providing No cue.

Task 4 — Figure 8-B shows that participants have higher rank-
ordering scores and higher perceived confidence in both the Haptic
cue and Motion cue conditions as compared to the No cue condition.
In Figure 9-C, we see that participants also experience a higher
overall perceived workload in the absence of a cue. Between the
conditions where participants received a cue, participants reported
higher performance and lower effort in the Haptic cue condition
where they received direct haptic feedback through their hand.

7 DISCUSSION
Our study assessed participant performance and experience on a
range of tasks, progressing from simple to more challenging tasks,
and showed support for hypotheses H2 and H3.

H1: While prior literature suggests strong illusory effects of
pseudohaptics in VR and screens, the results of Task 1 suggest
that, in robot teleoperation settings, the visuo-proprioceptive cue is
subtle. Specifically in prior work, the strength of the cue may have
been greater because subjects used a grounded input device (such
as a mouse) that could provide a passive reactive force [12], or other
settings may provide better shared perspective between the visual
and proprioceptive channels, such as in VR [26]. While a different
input device or a better viewpoint of the robot workspace could
improve the strength of the cue, we posit that the cue is unlikely
to lead to a strong illusory effect in a teleoperation setting because
of the complexity of movement associated with robot control. The
effect of the visuo-proprioceptive cue may also be more obvious to
expert users who have to focus less on robot control.

H2: The results from Task 2 support our hypothesis that partici-
pants do not only passively observe the visual motion cue (in the
Observer condition) but experience a stronger visuo-proprioceptive
cue (in the Controller condition). This stronger cue leads to bet-
ter task performance as compared to visual cues alone, especially
when it comes to being able to differentiate between different lev-
els of the cue. While these visuo-proprioceptive sensory conflicts
do not necessarily result in a haptic illusion, operators rely on a
more cognitive interpretation of the sensory conflict. Participants
in the Controller condition were able to quickly relate their observa-
tions to perceived variations in object weight without any explicit
learning. Importantly, we observe that different operators generate
different kinds of movements while doing the same task but are
systematically able to interpret the motion cue provided by our
approach. The finding that in the Controller condition the cue relies
on both the visual and proprioceptive senses is also consistent with
the higher physical demand reported by participants.

H3: The results of Tasks 3 and 4 support the hypothesis that
our cue improves user experience and task performance when
compared to receiving no cue. Participants are more accurate and
confident in their performance when provided with our motion
cue as compared to no cue. In the more challenging task (Task 4),
they also reported lower perceived workload when provided with
the cue. In the task with complicated motion paths (Task 3), the
cue was often missed when complex robot control was required.
When participants lifted the objects with their hand, four out of

nine participants stalled at the apex of the lift to discern the weight.
Our current motion cue switches off near the apex. Adding a sense
of downward pull when the object is stationary at the apex may
be an additional design consideration. Other improvements may
come from additional feedback when an object is being shaken or
extending the motion cue for a longer time period if the operator
is unsure of their decision.

Implications—In this paper, we explored how visually simulated
haptic feedback can be used within robot teleoperation interfaces.
Our findings highlight visuo-proprioceptive cues as a rich space
for HRI research and design and suggest several insights for future
work. We summarize these insights below:

(1) Novice users notice the cue, but do not automatically asso-
ciate it with weight, which may change with expertise. The
illusory effect of pseudohaptics may be difficult to obtain in
teleoperation due to complex robot control and movement.

(2) Once participants are aware of the haptic property they are
looking for, they are able to recognize and use the visuo-
proprioceptive cue and make consistent decisions.

(3) Participants are not only passively observing robot motion
during teleoperation, but they rather rely on the coupling
between the visual and proprioceptive feedback.

(4) The current design of the cue may not be readily noticed
in the presence of complex robot movement. While more
complex cues have not been explored in prior pseudohaptics
literature to communicate weight, the existence of complex
movements in a teleoperation setting present both the ne-
cessity and the opportunity to develop better cues.

(5) As tasks get more challenging, presence of the motion cue is
more valuable. This outcome is demonstrated by more sig-
nificant differences in user experience and task performance
measures for the conditions with and without the cue.

Limitations—Our work has many limitations. First, our study
used data from a small number of novice participants, and further
research with larger samples of people with a range of teleoperation
skills would widen our understanding and extend the generaliz-
ability of our findings. Additionally, while our study shows that
visuo-proprioceptive cue conflict can be used to convey informa-
tion in a teleoperation system, more work is needed to demonstrate
its utility in real-world teleoperation scenarios. Specifically, future
work must establish the utility of using the cue conflict for con-
veying actual weight. Finally, our work explored a single example
of a visuo-proprioceptive cue. In the future, we hope to explore
different ways to map between user movements and resulting mo-
tion to understand the design space of sensory conflicts that can be
created. We also hope to use visuo-proprioceptive cues to provide
other optically simulated haptic feedback, for example, to show
stiffness, friction, or texture.
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